Introduction

This guide is an introduction to the Kenan Tepe database forms, the daily journal, and the daily plans. For forms, I focus on what the fields mean and what to put in all the blanks. This guide does not explain how to enter data on the computer, but what data to enter. As a general rule, you should fill in as many blanks as you can. This approach may result in some redundancy, but such cross-checks will also encourage accuracy. Your goal is to fill out these forms and your daily journal entries and plans with enough detail and clarity that someone who did not excavate your trench, or has never even visited the site could figure out what you did and evaluate your decisions/conclusions about the associations between loci.

Daily Journal

The purpose of your daily journal is to record your activities each day, including which loci you excavated, how and why you excavated them, and your ongoing impressions of the relationships between them. Discussions of personalities or politics are FORBIDDEN subjects for the daily journal.

Why?

1) These topics are not very useful for our purposes, and make it more difficult for someone to understand your trench when they have to wade through your thoughts about who is good looking and who is mean.
2) Your journal entries may eventually be published on the internet, and we do not want to broadcast your personal feelings to the world. This is not to say your feelings are unimportant, rather that they are best recorded elsewhere. You may of course keep a personal journal in which you write anything you wish.

3) MOST IMPORTANTLY, discussions of politics could get you or our project into trouble with the Turkish authorities, because politics in Turkey, as in many countries, are taken seriously and your attempts to wax philosophical on social/political issues may be interpreted by others as subversive activities.

If you are upset at someone, the daily journal is not the place to express these feelings. Instead, talk to the person and try to work out your differences. It is never fun to read 6 months from now that “person X was a jerk today” (especially if you are person X!)

What should you write in your daily journal? State clearly which loci, by number (e.g. ‘L2003’) you are working on that day, how you are excavating them, and how you think they relate. A very important part of the journal entry is to state WHEN AND WHY YOU BEGAN A LOCUS. That is, justify and explain your decisions. Loci that magically appear on your plans or in your notes without any explanation will be very confusing for an outside reader to understand. So each day, state clearly why you began a new locus. For example, you might say:

Today we closed L2002 and started a new locus, L2003, when we noticed a change in soil color and compactness, from loose, light brown loam to very compact, dark brown loam. We also uncovered a circular pit, L2004, below L2002.

Also comment on changes in your observations from day to day. For example:

Yesterday we believed that L2005 was a wall appearing in the center of the trench. After further exposing L2005, we have now determined that it is only a jumble of rocks, not a wall. That is, the stones are not organized in a linear fashion, nor do they have rows or courses. Instead, they are mixed in no conceivable order.

Comments on how you excavated a locus, and how you collected material, are also very important. For example:

We excavated surface L4005 in two stages. First, we removed all the pottery resting upon the surface. This pottery was collected in three bags, with a separate bag for each concentration of sherds in the north (KT4052), center (KT4053) and southern (KT4054) portions of the surface. After removing pottery from the surface, we excavated the surface itself by removing .05m across the entire trench, after which we could see the line/profile of the surface in the baulks, indicating that we had successfully removed the locus. Next, we changed locus to L4006, the subsurface fill, and removed .20m of loose brown loam.
It is also useful to comment on the artifacts you are finding, any special or unusual finds, and what kind of sampling you are using. For example:

When removing surface L4005, we collected 6 soil samples, 4 for flotation and 2 for microstratigraphic analysis. The locations of these samples are plotted on the day plan. The surface contained many tiny potsherds and crushed animal bones. Notably, a gold earring (KT4055), a lapis seal (KT4056) and a carnelian figurine (KT4057) of a goat were recovered in the southern corner of the trench. We did not identify a pit around these artifacts, but their close association and unusual richness suggests that they may be the remnant of a cache of valuables intentionally buried beneath the floor. During excavation of the surface L4005, all soil was sieved through ¼” mesh. When we changed locus to the subfloor fill, L4006, we reduced our screening ratio to 1 out of every 5 buckets.

Finally, comment on any mistakes you might have made, or possible contamination of loci. For example:

When removing surface L4005, we discovered a pit at the north baulk. In the section, it is clear that this pit began about .30m higher than the surface and cut into the surface covering an area about .50m in diameter. Consequently, when we excavated the collapse debris, L4003, above the surface, L4005, we also excavated most of this pit without knowing it. Thus, the material of this pit has been mixed with the last .30m of L4003. This mixing applies to bags KT4044, KT4045, and KT4048.

When excavating pits L2022 and L2025, the workmen became confused and put material from both pits in both sets of bags. Consequently, the KT bags for these loci are mixed. This affects bags KT 2103-2108. As the pits are likely contemporary, this mixing will probably not affect the dating, and the soil samples from each pit, KT2109 and KT2110, were correctly labeled and not mixed.

Weekly Summary

At the end of each week, you should write a concise summary of the previous week’s activities. This summary will generally be no longer than a paragraph or two. The purpose of this weekly summary is to review your notes for that week to check for completeness, identify any mistakes or missing information, and to begin putting all the pieces together conceptually. At the end of the dig you will write a trench summary, and these weekly summaries will be a valuable aid in writing the final summary. A typical weekly summary may look something like this:

During this first week of excavation, we focused on cleaning the trench and the baulks, relocating the closing any loci from last season that were left open, taking new elevations, reassigning/renumbering loci, and excavating a pit
and fill. (*Note: start with new loci numbers each year. Do this by relocating old loci, redefining them, and renumbering them*)

During the off-season, erosion collapsed portions of the northern and western baulks, and destroyed most of mudbrick wall L1120. We removed all of the baulk collapse and cut down the top of wall L1120 until we reached “fresh dirt.” We also troweled the entire trench .05m to remove any additional contamination from erosion, and checked elevations with last year’s closing elevation numbers to be sure that we had removed all contamination. Finally, we troweled all the baulks and examined the sections, using last season’s drawings as a guide, to familiarize ourselves with the trench.

After renumbering the loci, we began by excavating pit L1128, last year’s L1122, which contained ash and some animal bones. This pit cut into fill L1129, last year’s L1123. This fill contains mudbrick debris, cobblestones and a few boulders. We removed .40m of the fill in the northern ½ of the trench by the end of the week. At the base of the fill, we are hoping to find a surface to go with wall L1129, last year’s L1120, which runs NW-SE across the middle of the trench. Preliminary analysis of this week’s finds indicates that pit L1128 dates to the Hellenistic period, while fill L1129 dates to the Early Iron Age. A notable find this week was a ceramic figure of a goat, KT1245, discovered in fill L1129.

To evaluate the strengths and weaknesses of your weekly trench summary, give it to someone who dug another trench and see if they can understand what you did.

Final Trench Summary

At the end of the season, you will write a final trench summary that pulls together your work throughout the season. It this summary, you look back at the season and lay out the connections between loci, describe notable finds, and “interpret” your work. Note that the final summary IS NOT A 600 page REHASHING OF YOUR JOURNAL ENTRIES. Resist the temptation to recount every detail about how you dug loci. Instead, focus on key loci, key connections, stratigraphy, and interpretation. The length of your summary will vary depending on what you found in your trench. Typically, summaries will be at least two or three single-spaced pages, but greater length is fine for trenches with lots of key loci. We also encourage you to write additional sections for your final summary, if you wish, to discuss specific issues in greater depth. A good final summary contains the following elements:

1) You need to start by describing your trench, including where your trench is located, what its dimensions are, what trenches are around it, and where you started – with a new trench or continuing an old trench? Also, how deep was the trench when you started and how deep is it now? Did you expand from a 5x5m to a 10x10m? Did you dig a probe trench? Finally, explain why you were digging there–what were your goals for the season?

2) Next, you need to summarize your excavations in the trench. You do need not to list every locus in the order it was excavated, instead, you need to present a clear
picture of how the loci fit together, preferably by stratigraphic layers. You do not need to describe every locus in detail, but every locus should at least be listed somewhere in the summary. For example, you may state that you removed topsoil (L1000), subtopsoil (L1001) and a deep layer of slopewash/erosion layers (L1002) before you encountered any significant artifacts, features or architecture. You may not need to describe these first three loci in detail.

Part of your description should be devoted to the methods you used, especially in the excavation of key loci. Did you use a big pick? A small pick? A trowel? Did you screen the soil? If so, how much? Did you use any special strategies or methods to excavate specific loci?

Another part of the description should describe the finds from your trench, and highlight any special or unusual finds, briefly describing them and their context.

Finally, you should include a brief note about the sections/baulks in your trench. Which sections did you draw? What is visible in your sections? What is not visible (e.g. loci that did not extend into the baulks). Do the sections help you understand the relationships between loci?

3) Third, you should interpret your trench. Interpretation involves making decisions or assertions about how the loci in your trench fit together, and how they relate to other nearby trenches and the site in general. For example, you may state that the walls and surfaces in your trench represent two phases of a building dating to the Early Iron Age, and that this pattern contrasts with adjacent trenches, where only one phase of EIA buildings or no EIA buildings were found. You may also suggest that the structures in your trench were domestic or otherwise, based on the artifacts recovered.

4) Finally, you should describe any loose ends or problems that the next person who digs your trench should be aware of. For example, you may want to state that you think a mudbrick wall is appearing in the southeastern corner of the trench, or that a pit is showing up in the middle of the trench. You may also note that you did not finish excavating a pit or a surface or another key locus. Or you may alert the next excavator to connections between your trench and nearby trenches. For example, you may note that wall L1034 in an adjacent trench probably continues into your trench, so the excavator should watch for it.

To evaluate the strengths and weaknesses of your final trench summary, give it to someone who dug another trench and see if they can understand what you did.
Sample daily Journal Entry

This sample journal entry goes with the sample top plan. Look at the summary and the top plan together and see if you can reconstruct/understand what the excavators did this day.

July 21, 2000 Area A, Trench 1 A. Creekmore, J. Chunker

Today we began excavating L1000, topsoil consisting of loose brown loam (10YR 6/6 brown) with an occasional cobblestone and some larger stones. After removing about 0.20m, we uncovered a NE-SW wall crossing the trench. This wall, L1003, is constructed of 0.20 – 0.40m fieldstones packed with soil. In the center of this wall, an eroded mudbrick superstructure covers the stones, but the mudbricks are not preserved elsewhere on the wall. By the end of the day, we had uncovered one course of L1003 on its northern face.

After L1003 appeared, we separated the soil on either side of the wall into two new loci, L1001 and L1002. We also identified a pit, L1004, on the southern side of the wall. We identified the pit by a circular area of loose soil that was also lighter in color than the surrounding soil.

L1001 consists of loose brown loam (10Yr ¾) and contains chunks of brown mudbricks. We also noted several cobblestones (10-20cm) appearing in the SW corner of L1001. These stones may be the top of another wall just emerging, or tumble from wall L1003. A large potsherd found in the eastern half of L1001 was left in situ in case it is part of a smashed pot not yet fully uncovered.

We did not fully excavate L1002 today; instead, we concentrated on removing pit L1004. This pit was filled with animal bones, including one shaped into an awl (KT1009). These bones are charred, some completely blackened. The soil in the pit is grey ash (2.5YR 2/1) and some larger C-14 chunks were collected for dating or wood study (KT1010). A 2-liter soil sample was also taken (KT1012). The pit itself has round sides, is consistently 0.50m in diameter, and ends at a flat base covered in plaster. L1004 was cut into L1002, but we found no surface associated with the pit.

When excavating L1000, L1001 and L1002, we screened every 5th bucket of soil in ¼” mesh. We screened 100% of the soil in pit L1004. A notable find today was a grindstone, KT1008, recovered in L1001 near the northwestern corner of the trench.
Sample Daily Top Plan

Examine this top plan alongside the sample daily journal entry.

The purpose of the daily plan is to serve as a visual record of your daily activities, and it is meant to be used in conjunction with the journal entries to reconstruct what you’ve done during the season, once it’s all over. With this use in mind, aim for clarity, precision, and information saturation. That is, try to state your findings, thoughts, and data clearly and accurately, and make sure you record all potentially useful information, including elevations, loci descriptions, your impressions, problems, and interpretations.

General format

The top plan consists of a scale drawing of your trench, on which you mark elevations, loci, artifact bags and small finds (KT #s) that you excavated that day. Your plan should be drawn to a scale that fits your trench onto a page of graph paper but is large enough to be legible. For 5mX5m trenches, a 1:25 scale is ideal (1cm = 25cm/0.25m), while a 10mX10m trench should use a 1:50 scale (1cm = 50cm/0.5m). Note that you do not draw your baulks on the plan, so the trench on your plan will measure 4mX4m or 9mX9m. Your daily plan should include at the top your name(s), the date, the area and trench letter/number, the datum you are using, a north arrow, and a scale. Except in special circumstances, you should orient your plan with north at the top of the page.

Symbols

For elevations, mark a cross with a circle around it in the approximate place where you took the reading. Top and bottom elevations are separated by a horizontal line. Locus numbers are placed where the locus is/was located with a box around the number. Loci above/below other loci are indicated by horizontal lines. KT numbers are also boxed and listed beside their locus numbers. Small finds are sketched onto the plan and their KT number and elevation marked next to the sketch. Other symbols are used as needed, but always provide a key at the bottom of the page. For example, you may choose to use ‘R’ and ‘P’ to distinguish rocks from potsherds, or hatching to indicate ash. Loci are divided on your top plan by a dot-and-dash line when necessary.

What to copy each day

Each night, using the light table, you will make the next day’s top plan template. When making the template, you copy all active locus numbers and all of the bottom elevations. Loci that are closed, KT numbers and the previous day’s opening elevations are not copied onto the next day’s plan. During the day, you add new elevations, new loci, and new KT numbers to the plan. You also draw/plot any new architecture or the boundaries of new loci. In a certain sense, your daily plans will form a comic-strip like flip book showing loci emerging and disappearing, elevations always going lower, and the trench transforming over the season. When drawing very complex entities, like walls or cobblestone surfaces, you do not need to do a stone-for-stone measured drawing on
your daily top plan. Instead, you need to do a measured drawing that catches the boundaries of the locus and gives an impression, perhaps by using a key (e.g. cross-hatching representing stones) of the make-up of the locus. A stone-for stone, or brick-for-brick drawing will be made from trench photographs; however, do not rely on photographs to bail you out or speak for you: make sure you accurately describe the character and make-up of a locus in your daily journal and locus sheets.
Photographs

Thanks to the low cost of digital images, we can now afford to take literally thousands of pictures each season. Therefore, do not skimp on photography. Every day you should take at least a few general views of your trench from different perspectives. You should also document any significant changes in a feature as you excavate. You do not need to wait until a feature is completely excavated or uncovered; on the contrary, take numerous progress photos that document the excavation. For example, if you are excavating a pit, take pictures when you first find the pit, as you dig the pit, and when you are finished. The same applies to a wall that is being uncovered, or even fill that you are removing. You might use digital pictures to show the color or texture of soil, the relationship between stones, the excavation method or technique, or just for a visual record of progress. **But again, do not rely on photographs to tell the story! Be sure you accurately and exhaustively describe all loci and contexts. Photographs are a great help, but they are not always worth 1,000 words!**

Note: be sure to include a scale in all photographs. A north arrow is also generally required. These items help orient your photo and can be invaluable clues in cases when the photographs are mixed up or mislabeled.

Here are some general categories of photographs that you should take often:

1) progress shots: daily photos of loci as they are excavated showing loci content, relationships with other loci, and excavation methods.

2) section/baulk shots: images of the baulks as you dig deeper to illustrate the levels you have excavated through.

3) general views: taken daily from a variety of perspectives to show the general relationship between loci in your trench, as well as overall daily progress.

4) locus shots: photos of specific loci as they are discovered and assigned. Ideally, you should photograph every locus, no matter how insignificant it may seem at the time.

5) “what is it” shots: if you don’t understand something, take a picture! you have to keep digging but taking several pictures of a confusing locus, soil, etc. (and describe it in your notes!!), will allow you to revisit the locus later and reflect on your original interpretations.

6) ‘in situ’ or in place shots: find something? Take a picture of it in the ground, where you found it, before you remove it. Subjects for this kind of photo include a pot, a concentration of pottery, an object such as a seal, a concentration of carbonized wood, slag, or specific bones in a burial. These photos are especially important in cases where you have something that you do not think you can remove in tact. Perhaps you found a pot that is cracked all over and will break when you pick it up. Maybe you found an iron knife that is highly corroded, a large piece of carbonized wood, or a mud statue. No
matter how carefully you excavate, each of these artifacts may never look the same after you remove them from the ground. Therefore, be sure to capture the artifacts as they were preserved when you found them.

7) sample shots: If you take a particularly important soil, flotation, or chemical sample, you may want to photograph the area from which the sample was taken.

Photo labeling

You will enter your photographs into a photo database. Be sure you record all possible information about the picture, including: the date, the area and trench, which loci are visible, which direction were you facing, why did you take the picture (e.g. to show the relationship between wall X and wall Y).

Video

We use video much less frequently than digital photography, but it is available. You should use video when you have an especially important locus that you want to document, to show general progress in the trench, to record an excavation technique, or to record discussions with other staff about the relationships between loci in your trench and their interpretation.

Locus Sheet

At Kenan Tepe, like many other near eastern excavations, we record what we dig by using locus numbers. A locus is any three-dimensional entity that you excavate in your trench. It can be a wall, a floor, an animal den, or wind-laid sand. If you think two entities are distinct, for example a pit versus a floor, create a new locus by assigning the new entities locus numbers. Loci can also be assigned arbitrarily, that is, when you do not identify two distinct entities but want to separate collected material for some other reason. For example, even if the soil looks the same across the trench, you may choose to divide the trench into halves and assign each half a separate locus number, to maintain tighter control over the material collected. If you are unsure whether or not two entities should be different loci, it is better to err on the side of naming extra loci. Dividing is better because we can always combine material later when we understand the stratigraphy better, but it can be very difficult to divide a locus into separate parts at a later date.

Locus numbers correspond to trench numbers, beginning with an even thousand. For example, trench 1 begins with locus 1000, trench two begins with locus 2000, and so on. Area letters are added to differentiate between multiple trench 2s in different parts of the site. If you are continuing a trench from a previous year, or expanding an existing 5m X 5m into a 10m X 10m, you will begin with new locus numbers. DO NOT continue your locus numbers from where they left off last year, but renumber all loci, and make a key in your journal that explains the equivalencies. For example: L2001 now = L2004, and so on.
Note that EVERYTHING YOU EXCAVATE MUST HAVE A LOCUS NUMBER ASSIGNED TO IT. For example, the material above a floor, on a floor, the floor itself, the sub-floor, and the material below that are all loci. Be careful not to conflate these into a single locus, or to skip a locus by assigning numbers to the material above and below the floor but not to the floor itself – even if it is a 1cm thick layer of ash with no artifacts, it is still a locus. If you have a bag of artifacts with no locus number, then the material is useless and meaningless because it has no provenience, or known location.

FIELD 1: DESIGNATOR:

(designate: to indicate or specify; to give a name or title to; characterize)

The purpose of this field is to categorize the locus, using the 7 choices provided. Choosing a designator is part of describing the basic characteristics of a locus, and enables us to search the database for different types of loci.

fill

Fill is a catch-all category for material that does not clearly belong to any other category.

Some definitions: “to fill” -- 1) To build up the level of (low-lying land) with material such as earth or gravel. 2) To stop or plug up; “fill” -- 1)Material for filling a container, cavity, or passage. 2) A built-up piece of land. 3) an embankment. 4) The material, such as earth or gravel, used to fill. These definitions focus on intentional filling of spaces, but archaeologically, fill includes any kind of material that accumulated by human (intentional: people as agent) or natural (unintentional: erosion, wind or water as agent) dumping/filling up spaces. Fill usually has no distinct shape because it is filling up spaces between/under/over other entities, such as walls. Some examples of fill include: 1) topsoil: just dirt; no clear origin, shape, purpose; 2) you are digging inside a room and the dirt has no clear organization, other than the space between the walls of the room. The dirt is not a floor or a pit; it’s just dirt inside a room.

Fill is in one sense less important than surfaces, wall, and other features. BUT, understanding fill can be critical to understanding how, over how much time, and under what conditions the archaeological site formed. Fill can lead us to rebuilding efforts, destruction or abandonment events, and a host of other behaviors or processes. Thus, DO NOT simply ignore fill, and blast through it to the next ‘real’ locus. Instead, treat fill as an important tool that connects the ‘real’ loci. That is, fill ‘fills’ in the horizontal and vertical spaces between the loci that we weigh so heavily in our interpretations. Fill may tell us which way a wall collapsed, how long a building was abandoned, whether a structure had a second story that crashed down and ‘filled’ a room, and so forth. Consequently, we must not let the designator ‘fill’ cause us to ignore this important kind of archaeological deposit.
wall

(some more specific characteristics of walls are discussed below under “Locus Description Sheet.”)

Some definitions:

1) An upright structure of brick, stone, wood, plaster, or other building material serving to enclose, divide, or protect an area, especially a vertical construction forming an inner partition or exterior siding of a building.

2) A continuous structure of masonry or other material forming a rampart and built for defensive purposes (“defensive wall; city wall”).

3) A structure of stonework, cement, or other material built to retain a flow of water or prevent erosion of an area of earth (“retaining wall”).

These definitions highlight some of the key purposes/functions of walls: to organize space, provide shelter, prevent movement of people/water/soil/animals from one space to another. ** Be alert when excavating, as walls may be built from almost any kind of material, including animal bones, and can come in a variety of shapes and sizes.

Generally, all parts of a wall are assigned the same locus number. For example, a common practice in the Southern Levant (Israel/Jordan) is to build a wall with two rows of stones and a rubble fill in between the stones. When dismantling a wall, the fill in the center and the artifacts collected therein may or may not be assigned the same locus number as the wall. This decision is up to the excavator. Generally, assigning the fill inside a wall the same locus number as the wall is OK, but if a wall was clearly constructed in multiple parts or has renovations, then these parts should be assigned different locus numbers. Courses or rows of a wall are generally not treated as separate loci, but other parts of a wall should be treated as different loci. For example, if a wall is plastered, then you should assign the plaster its own locus number, as it will often contain artifacts that may or may not be contemporary with the original construction of the wall. Multiple layers of plaster should be treated as multiple loci, just as multiple floors – even if superimposed – receive separate locus numbers. Also, blocked doorways or windows should be assigned locus numbers and dismantled before removing the wall. Finally, the foundation trench of a wall, if it has one, should be excavated as a separate locus from the wall (see below). Carefully unpacking construction and renovation events by assigning separate locus numbers to the various parts can improve our understanding of the architectural history of a structure.

Note about walls:

Once you find a wall, it will be tempting to dig alongside the wall to “follow” it. This approach is dangerous. NEVER trench along walls – that is, do not dig along/parallel to walls looking for surfaces. Instead, dig PERPENDICULAR to walls. Why? If you trench along a wall by digging parallel to the side of the wall, you might cut through a surface and sever its connection with a wall. Once this happens, it can be difficult to reconnect the two without a good amount of speculation and wishful thinking. If you dig perpendicular to walls, then any surfaces you cut through will hopefully appear
in the section/baulk and you can then trace them alongside the wall. Perpendicular trenching along walls finds surfaces and then follows them, preserving the connection between the surface and the wall.

feature

A feature is often defined in archaeological literature as a ‘non-portable artifact.’ In other words, something made or altered by humans that cannot be easily picked up and moved. Yet, during excavation it can be difficult to distinguish a feature of this type from something else, like an animal burrow or erosion gully. Thus, for our forms, “feature” has a broader definition that includes this traditional description as well as any distinctive entity with clear borders. In other words, a feature is a distinct entity that is not a pit, burial, wall or floor/surface. Thus, a feature can be something human-made, animal made, or naturally occurring. As with many loci, you often will not fully understand what a feature is until after you have excavated it and its context.

some examples:

1) A construction that is not a wall, for example a bench, a large flat stone used as a table, or a circular bin used for storing goods.

2) A dark or light area of earth with irregular borders that is not clearly round or oval like a pit. Such areas are often the stain left by decayed wood or tree roots, the residue from metal objects or other material, or rodent dens.

3) A pile or concentration of potsherds, stones, or some other material. Such concentrations of material are generally enigmatic (puzzling), and we often do not understand their origin or function until we excavate deeper and wider around the area. These piles of artifacts or material may represent rubbish dumping events, erosion events, or the sole remnant of a once larger, more coherent entity.

floor/surface

This category contains both built surfaces, such as a road or room paved with cobblestones, and surfaces that form when earth is compacted in areas that are frequently traveled/trampled.

some examples:

1) A plastered floor in a house.

2) The floor of an animal pen, which is compacted from heavy trampling and often covered in layers of dung from the animals.

3) The ground surface around a building, which is compacted from trampling and often covered with debris from activities in the area.
how to recognize an earthen surface:

1) A layer of earth that is more compact than the earth above and below it. Earthen surfaces are compacted by human and animal traffic. Think of a dirt path through the woods or the grass: the grass and brush is often killed by trampling, while gravel, trash, acorns and such are pressed into the dirt along the path.

2) An area of flat lying pottery and other objects. Surfaces are repositories for stuff. This stuff usually rests flat on the surface or is trampled flat.

3) Larger pot sherds than you are used to seeing in fill, pits or other features. Pottery in fill has often been moved around several times and consequently is broken into smaller and smaller pieces. In contrast, pottery on a surface, like a room in a house, is often lying where it originally fell, and consequently appears in larger pieces than it would if it was swept up and dumped in a trash heap. NOTE: This “large potsher’d” trick is not a rule, but a recurring situation. Well-trafficked surfaces also often contain small potsherds because people and animals break up pottery when they trample it. Furthermore, many surfaces are completely bare, because people, both now and in the past, are known to clean up their mess!

4) Several artifacts or features appearing at about the same level. Surfaces DO NOT have to be flat, but can slope in many directions. Nevertheless, if you find several things at the same general level/elevation, you may be on or near a surface. This observation echoes point #2: surfaces are repositories for stuff. For example, if you’re digging and you find a grindstone, then an area of smashed pottery, then a little wall and the top of a pit, all at a similar level, then you may have a surface.

5) A layer of darker soil. Earthen surfaces often contain a good amount of organic material that decays and darkens the soil. Think of good potting soil. Surfaces with lots of organic material often turn dark brown, grey or black. This also occurs due to the settling of ash and soot from ovens/fires in homes.

6) A layer of white material, often very thin (<1cm). Such white layers may be the only remnants of a plastered floor, or wall plaster fallen on a floor. Even though they can be incredibly thin and almost imperceptible, such surfaces are very important. So keep an eye out for these, as they can disappear with a few trowel scrapings and stare back at you from the baulk!

General notes about floors/surfaces:

1) Surfaces ARE NOT always flat, but can slope in many directions.

2) Surfaces are often differentially preserved; that is, you may find them in a patchwork of pieces separated by disturbed or invisible connections. Think of a road chopped up by potholes. Surfaces may appear in a tiny place and then show up again further away in your trench. So if you find a surface in one corner and it seems to disappear in the middle of the trench, don’t give up on it – it may reappear in the opposite corner.
3) Surfaces, particularly in houses, are often re-laid or repaired. Thus, if you find one surface, don’t assume that you’ve got THE ONLY surface for that room and proceed to plow looking for the foundations of the walls. Instead, assume that there are more surfaces to be found and keep an eye out for them.

4) Surfaces are potentially the most important thing you can find. Why? Because we date a surface by the artifacts lying on top of it, and by extension we date walls by the surfaces touching/contemporary with them. In other words, in order to date walls and the buildings they make up, we have to find surfaces that go with the walls. A bunch of walls with no firm date are difficult to interpret. Also, the debris on surfaces provide clues to understanding how rooms were used. With this in mind, it is critical to identify any connections between surfaces and walls. To do this, never trench along walls—that is, do not dig along walls looking for surfaces. Instead, dig perpendicular to walls. Why? If you trench along a wall by digging parallel to the side of the wall, you might cut through a surface and sever its connection with a wall. Once this happens, it can be difficult to reconnect the two without a good amount of speculation and wishful thinking. If you dig perpendicular to walls, then any surfaces you cut through will hopefully appear in the section/baulk and you can then trace them alongside the wall. Perpendicular trenching along walls finds surfaces and then follows them, preserving the connection between the surface and the wall.

pit

definition: A natural or artificial hole or cavity in the ground.

Pits always “cut” something; they can be “below” another entity, but they are rarely “above” anything. For a pit, to be above is usually to cut. That is, pits dig into, slice through, and remove some other material. Think of digging a hole to plant a tree: you have to remove dirt to make room for the tree roots. After you place the tree in the hole, you pack as much dirt back in the hole as you can, and then dump the excess soil elsewhere or leave it lying around on the ground. In the process of planting a tree, you have dug a pit that will be recognizable archaeologically by its shape and its contents.

shape:

Pits are often circular or oval, but can take on many shapes depending on their purpose. Burial pits tend to reflect the method of internment: long and narrow pits for extended bodies, round pits for bodies buried in the fetal position. Many pits are simply holes dug to bury trash, while others are dug to store goods, including food and valuables.

how to find pits:

Pits tend to stand out as areas of softer and looser dirt than the soil around them (the soil they cut). The dirt in pits is often looser than surrounding soil because it has been broken up by the action of digging (thinking of breaking up the dirt to plant a tree).

Pits may also be a different color than the surrounding soil, because the action of digging and filling in a pit mixes up the soil layers, like vanilla-fudge swirl ice cream.
A Note about Pits:

Recognizing pits is possibly the second most important task in the field, after recognizing surfaces. Why? Since pits cut the material around them, they are by definition later in time than what they cut. That is, when you dig a hole to plant a tree or bury a person, the material that goes into the pit post-dates the material in the ground around the pit. Therefore, if you do not recognize a pit, and instead dig a pit and its surrounding material as a single entity, then you will have mixed the dates of the two entities. Once the artifacts from two entities are mixed up then they cannot be easily disentangled.

Burial

This category includes any human or animal intentionally interred in a pit, built tomb, or on the surface. Persons crushed in a collapsing building or left for dead after an attack in a war are not technically burials, but “features,” because they were not placed in their final resting place intentionally.

Burials are generally recognized by their pits, with can be distinguished by the characteristics of pits (see above). Burials also may be marked by piles or circles of stones, bricks, or other material. Burials may be housed in brick, stone or natural (cave) tombs built above ground or underground. Finally, burials may consist of non-internments, such as the example of a person laid to rest in on the ground surface on a mat or spit, but not actually covered in earth or secreted away in a tomb or cave.

Burials should be excavated with great care and attention to detail. Funerals are often accompanied by ceremonies that leave their traces in the ground around the burials, if you look for them. Thus, attention should be paid to the shape of the burial pit, the orientation of the burial, the composition of the soil in the pit, and any artifacts from the soil as well as the skeleton itself. Finally, the wider context of the burial should be investigated. Is the burial in a cemetery or a beneath a house floor? Are there nearby monuments that may be associated with the burial? Are there features that indicate when the burial was “forgotten,” such as a road built over the burial, a ditch cutting through the burial, or garbage dumped over the burial/cemetery?

Sounding level

This category only applies to trenches excavated as soundings, or to loci excavated in distinct levels (such as a sounding in the corner of a normal trench). Levels can be arbitrary (e.g. however much dirt you removed today; every 30cm; arbitrary levels cut through/across natural levels), or purposeful (e.g. you record soil changes and change levels accordingly). Thus, a sounding level can contain a host of other designators lumped into one category. If lumping occurs, this should be noted in the description of the level.
FIELD 2: LOCUS MEASUREMENTS

Top Depth

When you open a locus, choose several of the highest elevations at which you began the locus and record them here. A small locus may only need one or two elevations, but any locus larger than a meter or so, or any locus that varies greatly in elevation across its area should have more than two elevations. Use the handy directional indicators provided, but only use those that you need; if NW and SE are most appropriate, use those. Record elevations in meters (not centimeters) like this: 98.54 m (= 98 m, 54 cm).

Bottom Depth

Same procedure as “top depth,” but bottom elevations are filled in when a locus is finished or closed for the season. Also, bottom elevations may not always correspond to top elevations. For example, maybe you did not take a center elevation when you started a locus but you think it is important to list a bottom depth center elevation to show some characteristic about the end of the locus. In this case, you may have a bottom elevation for the center, but not a top elevation for the center. In sum, you may have “extra” bottom elevations; however, you should always list the bottom elevation for every top elevation taken, even if these are redundant (e.g. several bottom elevations are the same value).

Note about Elevations:

At the end of the season, be sure to fill in bottom depths for all loci, even those which you have had to end prematurely due to the end of the season. Obtaining bottom depths for all loci should be part of your close-down week activities. You never know – we may not be able to return to your trench next season, or we may choose not to excavate there, so bottom depths are essential.

Length

The distance between the end points on the longest axis of the locus. In the case of a triangular, circular or odd-shaped locus, just take the longest axis.

Width

The distance between the midpoints of the long axes of the locus. In the case of a triangular, circular or odd-shaped locus, just take measurement at the midpoint of the long axis.

Starting Date

Date you first identified the locus and gave it a number -- not necessarily the same day you began to excavate it. For example, you may uncover a wall or feature but not excavate it before the season ends; regardless, always assign any new entity a locus number. You should always have numbers for every locus that is in your trench, both those you are excavating and those you are “leaving.”
Ending Date

Date you finished the locus. By finished, we mean the date it is GONE – lying in the dump pile, or redefined and renumbered! In some cases, loci may not have “real” ending dates. For example, you may find a wall but not remove it before the season is over. Generally, we close all loci at the end of a season, even if it is not “finished.” Thus, all loci should have bottom elevations and closing dates, even if these are arbitrarily determined by the last day of excavation.

Note about closing loci:

Before you close a locus, make sure you have recorded all possible information about the locus: Do you have opening and closing elevations? Soil/make-up descriptions? Stratigraphic information? Dimensions? Description? Designator?

Note about removing loci:

Before removing a locus, make sure you have recorded all the necessary information. Once a locus is removed and dumped off the side of the tel, it is gone forever! So make sure you have all the data you need before you remove a locus. Ask yourself some questions: 1) Do you have enough elevations? 2) Have you adequately described the locus? 3) Do you have photographs of the locus? 4) Do you have drawings of the locus?

FIELD 3: STRATIGRAPHIC LOCATION

This field is used to describe the relationship between a locus and all its contiguous loci.

this locus is below

What locus is this locus immediately below?

this locus is above

What locus is this locus immediately above?

abuts

What locus is immediately adjacent/beside this locus?

cuts

What locus does this locus cut into/dig a hole into? For example, a pit always cuts some other locus, burials cut other loci, and the foundation trenches of walls cut other loci.

is Cut By

What locus cuts this locus? Is this locus cut by a pit, burial, or foundation trench?
is Within

This tricky category is used infrequently. Examples include the material inside a well, earth inside a pot, ash inside an oven, and a burial inside a tomb.

equals

What locus is this locus equivalent to? For example, maybe you separated your trench into two halves and excavated them as different loci. Now you determine that the two halves are the same material/event/entity, and you indicate that by saying that they equal each other. NOTE THAT YOU STILL FILL OUT SEPARATE LOCUS SHEETS FOR EACH LOCUS, EVEN IF YOU DECIDE THAT SEVERAL ARE EQUIVALENT. Another example: perhaps you expanded a trench from last year, and found another section of a wall from the earlier trench extending into the new trench. You may give the new piece of the wall a new locus number until you are certain that they are part of the same entity. Once you establish their connection, you call them equal. Finally, you may excavate parts of a poorly preserved surface that appear at opposite ends of the trench with no connection between them. If so, you would assign these surfaces two locus numbers but call them equal if you believe they are part of the same entity.

Stratigraphic Remarks

Is there anything you need to note about the relationship between this locus and other loci? For example, you may note that a surface is below a stone layer, similar to a surface you observed in an adjacent trench, or that a wall is probably associated with a surface that is too poorly preserved to connect to the wall directly.

FIELD 4: GENERAL DESCRIPTION

color

Describe the color of the locus, using the munsell color chart. List both the number (e.g. 2.5YR ⅔) and the color name (e.g. reddish brown). For a stone wall, color may be irrelevant, but for mudbricks color can be important. You will find green, brown, orange, red and other color bricks. The color of the bricks may belie the origin of the material used to make them.

texture

Texture is particle size. This can be determined by use of a scale (see below) and a “feel test” in which you wet the soil and rub it between your fingers. More instruction on this procedure will be provided in the field. To teach yourself, get a copy of “Physical Properties of Mineral Soils,” from Andy. Even when using a known scale, always provide sizes for what you are calling gravel, cobbles, flagstones or boulders. For example, you may describe a surface this way: comprised of 8-10cm diameter cobbles with > 4mm pebbles packed into the cracks between the cobbles. Alternatively, you may describe a fill as a sandy loam, or a surface as a silt loam.
According to the Wentworth scale, a standard geological measuring stick, the following parameters are definitive:

- **clay** < .002mm in diameter
- **silt** .002 - .06mm
- **sand** .06-2mm
- **pebbles** 2-4 mm
- **gravel** .4-6.4cm
- **cobbles** 6.4 – 10cm
- **flagstones** 10-25cm
- **boulders** greater than 25cm

Other sources use different scales, so it is important to always provide a range of sizes when you describe “cobbles” or “boulders.”

composition

This category may be somewhat redundant, but this provides an opportunity to more fully explain what is in the locus. For example, a wall may be built of cobblestones, large potsherds, and mudbricks; if so, state that in this space.

description remarks

Use this space to add to or explain the other categories. For example, you may wish to emphasize some key characteristic, such as the abundance of large mammal bones used to build a platform or bench.

FIELD 5: FILL SPECIFIC DESCRIPTION

depositional history/origin

For fill loci, give your best guess/estimate for where the material comes from. For example, was it deposited by wind or water? Did it accumulate by erosion? Was it dumped intentionally to fill in a room or a ravine? Clues to the origin of fill will be found in its composition. If it is mostly refuse, like animal bones and pottery, then trash dumping may be the most reasonable explanation. If the fill is mostly silt and has few artifacts, then wind may be the depositor. Finally, water deposition is evident by sorting of materials, with heaviest particles towards the bottom and lightest on top (e.g. gravel at bottom, silt on top).
FIELD 6: GENERAL REMARKS

This is the place to say, concisely, what the locus is, or what you think it is, in a nutshell. Do not attempt to summarize all your journal entries about the locus, but focus on the key points. You may need to repeat information found in other fields on the locus sheet in order to tie things up nicely. Also use this space to make suggestions about connections between this locus and other loci, or to express reservations about how the locus was excavated or what should be done about the locus in the future, if it was not finished this season.

Here is a sample entry for this field:

This locus is a beaten earth floor, only .03m thick, that abuts wall L3002. Traces of plaster are visible as thin white patches on some parts of the floor, and there was a concentration of ash, L3003, at the northern end of the surface adjacent to the baulk. The floor is cut by two pits, L3005 and L3006, both of which contained animal bones and ash. There were very few artifacts found on the floor, excepting a large grindstone, KT 3021, found on the south end of the trench resting against wall L3002. This locus is similar in composition to and likely contemporary with surface L2019, located in adjacent trench B2. Beneath the eastern portion of this surface, we uncovered a NW-SE wall, L3024, which also runs beneath wall L3002, indicating that this surface represents the first occupation of a new structure in area B.
Locus Description Sheet

FIELD 1: GENERAL ARCHITECTURAL DESCRIPTION

material

What is the wall or feature made from? Mud bricks? Stone? Bones? Pottery? Pise (layers of clay)?

stone/brick size

Provide all dimensions of bricks and stones. If they are field stones or bricks of odd sizes, indicate a range: e.g.: .10-.20m X .20 -.30m X .20 -.25m

foundation trench

Does the wall or feature have a foundation trench? If so, briefly describe it here (a fuller description should be made on the locus sheet for the foundation trench).

associated surfaces

What surfaces go with/abut/are contemporary with this entity?

associated features

What features go with/abut/cut are contemporary with this entity?

architecture remarks

Do you need to add anything?

FIELD 2: WALL/ARCHITECTURAL FEATURE SPECIFIC DESCRIPTION

type of structure

number of courses

How many courses does it have – courses = stones/bricks/other stacked vertically.

number of rows

How many rows does it have – rows = stones/bricks/other laid side by side horizontally. Stone walls often have two rows of stones with a rubble fill in between.

foundations

What is the entity founded on? Does it have a stone foundation? Brick foundation? Rubble/debris foundation? No foundation? Is it founded on top of another wall or feature?

Bonded to

What is it bonded to, bonded meaning interlocked with, not just resting against.
Abuts
What does it abut, abut meaning resting up against but not interlocked with.

Blocked Doorways
Are there any blocked doorways? If so, what locus numbers? Where?

Modifications/Rebuildings
Briefly note/describe.

FIELD 3: FLOOR/SURFACE SPECIFIC DESCRIPTION

construction
How is the surface built? Is it beaten earth? Is it cobblestones with a sand base? Plaster over dirt?

subfloor fill
Is the surface built on top of a layer of fill? Is this fill clearly a sub-floor construction or simply preexisting material?

associated walls
What walls are contemporary with, abutting or bonding with this surface?

FIELD 4: PIT SPECIFIC DESCRIPTION

subdivisions
Is this pit part of a complex of pits that you have subdivided into many loci? Is this a pit within a pit? Have you excavated this pit as multiple loci because it contained different layers of fill or debris? Does it have a lining – clay, stone or brick – that you excavated as different loci? Explain.
Finds (kt Numbers) Sheet

Fill out this sheet as you assign new KT numbers. ALWAYS FILL IN ALL THE BLANKS YOU CAN WHEN YOU START A NEW KT NUMBER. OTHERWISE, YOU WILL GET CONFUSED AND USE A NUMBER MORE THAN ONE TIME, CAUSING LOTZ OF PROBLEMS. When you have more information, for example late in the day after you have collected the material, add to the description or remarks.

KT #
Sequential number used to keep track of all material. There is no limit to the number of KT numbers you could use for any one locus. Never skip or reuse KT numbers, and do not hesitate to use more numbers! There is no reason to try to save KT numbers by cramming a bunch of pottery into a small bag. If you have a lot of material, make a new bag, a new tag, and a new KT number for it.

locus
locus number that goes with this KT number

ratio
If you did any sampling to obtain the material in this KT bag, explain the ratio. For example: 1 of every 5 buckets, or ½ of the soil.

type
What type of sampling and collecting did you do to get the material in this KT bag? Screening? Flotation? Soil sample (not for flotation)? Or simple visual recovery – you picked up what you saw in the soil but did not screen, float or otherwise sample the locus during recovery of the artifacts in this KT bag.

date
What day did you assign this KT number?

material
What is in the bag/box/container with this KT number? For this field you have several choices. Choose the answer that BEST matches your finds. The choices provided are those that meet our research needs, so some are more general and others are more specific. Consequently, you may have a find that fits two categories but is best suited to one category. For example, an obsidian tool is also a lithic and a stone, but you should choose the ‘obsidian’ category. Use the description box to more fully describe the material if necessary.

The categories are:
- Pottery: anything made of clay, including pots, figurines, ovens, etc.
- Bone –human
- Bone – animal
- Shell
Lithics: chipped stone tools, debitage and raw materials
Stone: misc. stones including basalt, limestone, etc.
Obsidian: any obsidian, including tools, raw materials, debitage
Carbon: carbonized material – charcoal
Floral: plant remains including seeds, wood chunks, etc.
Metal: any metal including objects, raw material and slag
Soil – for flotation
Soil – for microanalysis or other purposes
Glass: you will probably not find any ancient glass (sorry)
Other: cannot fit it into one of the other categories? Choose ‘other’ and explain your answer in the ‘description’ box. (for example, if you take a plaster sample from a wall or floor)

excavator
Who is filling out this form?
sf = small find
Is this KT a small find? Small finds are artifacts that are unique or special in some way, but also include more common items like grind stones and spindle whorls. Small finds are often not “small.” Examples of small finds include: figurines, whole vessels, grind stones (mortars and pestles), loom weights, modified bones (bone tools/objects), seals, inscribed potsherds, coins, beads, jewelry, and especially remarkable stone tools or materials (e.g. a complete sickle blade, an obsidian core, a chunk of lapis or copper). Small finds get their own KT number to keep them separate from other material recovered in the same soil or matrix.

description
Provide a brief description of the KT bag’s contents. For example: pottery from inside the oven, L3002. Or: soil from an ashy area of the surface. Or: concentration of fish bones found in fill. Or: contains whole pot that can be restored/mended. Also use this category to further describe the material. For example, if you chose ‘stone’ as the material, you may need to state here that it is a basalt grindstone.

elevation high/ elevation low
List the highest and lowest elevation for this KT bag (what was the highest opening elevation and the lowest closing elevation for the locus during the time that this material was recovered?)

remarks
Anything you need to add. For example: this pottery may mend with KT2034; this KT may be contaminated because the bag was dumped out in the van. This object is fragile – handle with care. This needs conservation. Do not eat.